Life cycle assessment of coal-based power plants: impacts on urban carbon footprint and externality costs

  • Zahidah Mahroini Department of Geography Education, State University of Surabaya, Surabaya, Indonesia
  • Feneubrina Bainirad Department of Urban Governance, National Taipei University, Taiwan
Keywords: carbon footprint, externalities cost, life cycle assessment, coal based powerplant

Abstract

Indonesia’s economic growth is strongly driven by industrial activities concentrated in large urban areas, resulting in high energy demand. Approximately 40-70% of Indonesia’s energy is supplied by coal combustion, contributing significantly to carbon emissions and accelerated global warming. The coal used would still be main source in the future energy of Indonesia especially in cities. This study proposes to estimate the carbon emission and environmental cost (EC) of power plant life cycle use benefits transfer method, while also accounting air = and water pollution. The results show that during 2010-2020, the EC for GHG emission is about 9 to 19 billion US$, while EC for air pollution is about 1.56-5.37 billion US$. Water pollution averaged 0.002658049 g/TWh for phenol and 9.16425 g/TWh for total COD. Then, the total water depletion is estimated to be an average of around 4.9 billion m3/MWh. Jakarta itself has a carbon footprint of 25,755 tons of CO2 and produces external cost of US$ 3,249,506. This study highlights the urgency of reducing carbon emissions through technological innovation, strengthened energy policies and enhanced public energy literacy, with positioning cities as key drivers of the transition toward cleaner energy systems.

Downloads

Download data is not yet available.

References

Arsyad M and Setiadi. 2020. Gate to gate life cycle assessment coal power plant in Indonesia. APCORISE '20: Proceedings of the 3rd Asia Pacific Conference on Research in Industrial and Systems Engineering:333-338. https://doi.org/10.1145/3400934.3400995.
Bengtsson L. 1996. The climate response to the changing greenhouse gas concentration in the atmosphere, chapter, decadal climate variability. NATO ASI Series vol 44:293-332
Dincă C, Badea A and Apostol T. 2010. Life cycle impact assessment of fossil fuels. In U.P.B. Scientific Bulletin Series C 71(1):115-126.
European Commission Report. 2021. GHG emission of all world countries. European commission. Luxembourg. doi: 10.2760/ 173513
Friederich MC, Moore TA and Flores RM. 2016. A regional review and new insights into SE Asian Cenozoic coal-bearing sediments: Why does Indonesia have such extensive coal deposits?. International Journal of Coal Geology 166:2-35, https://doi.org/10.1016/j.coal.2016.06.013.
Handoko EY, Naibaho LK, Saptarini D and Yuwono. 2021. Sea level variability around the Java Sea (study Area: Northern of Gresik and Surabaya) using Cryosat-2 Altimeter. IOP Conference Series: Earth and Environmental Science 731(1). https://doi.org/10.1088/1755-1315/731/1/012013]
Karkour S, Ichisugi Y, Abeynayaka A and Itsubo N. 2020. External-cost estimation of electricity generation in G20 countries: case study using a global life-cycle impact-assessment method. Sustainability 12(5):2002
Listyarini S. 2012. penggunaan goal programming untuk menganalisis pemborosan listrik di DKI Jakarta. Jurnal Sains MIPA Universitas Lampung 6(3):1-10.
Manabe S. 2019. Role of greenhouse gas in climate change. Tellus A: Dynamic Meteorology and Oceanography 71(1):1620078.
Marfai MA and King L. 2008. Potential vulnerability implications of coastal inundation due to sea level rise for the coastal zone of Semarang city, Indonesia. Environment 54(6):1235-1245. https://doi.org/10.1007/s00254-007-0906-4hn.
Ministry of Energy and Mineral Resources. 2016. Indonesia Energy Outlook 2016. Ministry of Energy and Mineral Resources. Jakarta.
Ministry of Environment and Forestry. 2017. Third national communication under UNFCC. Ministry of Environment and Forestry. Jakarta.
Ministry of Energy and Mineral Resources Republic of Indonesia. 2000. Handbook of energy and economic statistic of indonesia. Center for Data and Information Technology on Energy and Mineral Resources. Jakarta.
Nugroho R, Hanafi J, Shobatake K, Chun YY, Tahara K and Purwanto WW. 2022. Life cycle inventories and life cycle assessment for an electricity grid network: case study of the Jamali grid, Indonesia. International Journal of Life Cycle Assessment 27(8):1081-1091. https://doi.org/10.1007/s11367-022-02082-5
Ojonimi TI, Chanda TP and Ameh EG. 2021. Acid mine drainage (AMD) contamination in coal mines and the need for extensive prediction and remediation: a review. Journal of Degraded and Mining Lands Management 9(1):3129-3136
Pirmana V, Alisjahbana AS, Yusuf AA, Hoekstra R and Tukker A. 2021. Environmental costs assessment for improved environmental-economic account for Indonesia. Journal of Cleaner Production 280 124521. doi:10.1016/j.jclepro.2020.124521.
Prasetyo Y, Bashit N, Sasmito B and Setianingsih W. 2019. Impact of land subsidence and sea level rise influence shoreline change in the coastal area of Demak. In IOP Conference Series: Earth and Environmental Science 280(1):012006). IOP Publishing. https://doi.org/10.1088/1755-1315/280/1/012006
[PLN] Perusahaan Listrik Negara. 2019. Statistic PLN [internet]. Tersedia di: https://web.pln.co.id/statics/uploads/2020/08/Statistik-2019-4-8-20-rev.pdf
[PLN] Perusahaan Listrik Negara. 2019. Rencana usaha penyediaan tenaga listrik (RUPTL) PT. PLN (Persero) 2019-2028 PT. PLN (Persero), [Internet] Tersedia di (https://web.pln.co.id/media/siaran-pers/201 9/04/rencana-usaha-penyediaan-tenaga-listrik-atau-ruptl)
Raihan A, Muhtasim DA, Pavel MI, Faruk O and Rahman M. 2022. An econometric analysis of the potential emission reduction components in Indonesia. Cleaner Production Letters 3:100008.
Sabubu TAW. 2020. Pengaturan pembangkit listrik tenaga uap batubara dalam peraturan perundang-undangan (analisis dari perspektif hak atas lingkungan yang baik dan sehat) [Tesis]. Departemen Ilmu Hukum. Fakultas Hukum. Universitas Islam Indonesia
Samadi S. 2017. The social costs of electricity generation categorising different types of costs and evaluating their respective relevance. Energies 10(3):356. https://doi.org/10.3390/en10030356
Setyowati DL, Amin M, Astuti TMP and Ishartiwi. 2012. Community efforts for adaptation and anticipate to flood tide (ROB) in Bedono Village, District Sayung Demak, Central Java, Indonesia. Man In India 97(5):241-252.
Sugiyono A. 2005. Biaya eksternal dari pembangkit listrik Batubara [Prosiding]. Seminar Akademik Ilmu Ekonomi. Paralel Session IIA Energy and Environment: 1-13 https://www.researchgate.net/publication/275652228
Tozsin G. 2014. Hazardous elements in soil and coal from the Oltu coal mine district, Turkey, International Journal of Coal Geology 131:1-6. https://doi.org/10.1016/j.coal.2014.05.011.
Wang X, Wang L, Chen J, Zhang S, & Tarolli P. 2020. Assessment of the external costs of life cycle of coal: the case study of Southwestern China. Energies 13:4002. doi:10.3390/en13154002
Widiawaty MA, Nurhanifah N, Ismail A and Dede M. 2020. The impact of Cirebon coal-fired power plants on water quality in Mundu Bay, Cirebon Regency. Sustinere: Journal of Environment and Sustainability 4(3):189-204. https://doi.org/10.22515/sustinere.jes.v4i3.114\
Widiyanto A, Kato S and Maruyama N. 2003. Environmental impact analysis of Indonesian electric generation systems (development of a life cycle inventory of Indonesian electricity). JSME International Journal Series B Fluids and Thermal Engineering 46(4):650-659.
Wijaya ME and Limmeechokchai B. 2010. The hidden costs of fossil power generation in Indonesia: A reduction approach through low carbon society. Songklanakarin Journal of Science & Technology 32(1):81-89.
World Bank. 2021. Indonesia price index and Indonesia exchange rate during years 2011-2020 [Internet]. Tersedia di https://data.worldbank.org/
Yudovich YE and Ketris MP. 2005. Mercury in coal: a review Part 2. Coal use and environmental problems. International journal of coal geology 62(3):135-165., https://doi.org/10.1016/j.coal.2004.11.003.
Zhu, Y, Jiang S, Zhao Y, Li H, He G and Li L. 2020. Life-cycle-based water footprint assessment of coal-fired power generation in China. Journal of Cleaner Production 254:120098.
Published
2025-12-31
How to Cite
Mahroini, Z., & Bainirad, F. (2025). Life cycle assessment of coal-based power plants: impacts on urban carbon footprint and externality costs. Jurnal Pengelolaan Lingkungan Berkelanjutan (Journal of Environmental Sustainability Management), 9(3), 307-320. https://doi.org/https://doi.org/10.36813/jplb.9.3.307-320
Section
Articles